
Unleash your feature
flags!
@jhuspek, OpenAlt 2023-11-12

2

Jakub Huspek

IT Solution Designer @T-Mobile

Maker & Night owl @baslirna

What is not a feature flag?

COOL_FEATURE = True

def do_something():

if COOL_FEATURE:

print("New feature is enabled!")

else:

print("New feature is disabled.")

Feature Flags (often also refered to as Feature Toggles) are a
powerful technique, allowing teams to modify system
behavior without changing code.
Martin Fowler, Feature Toggles

What is a feature flag?

client = FeatureFlagClient.initialize()

def do_something():

if client.is_enabled("COOL_FEATURE")

print("New feature is enabled!")

else:

print("New feature is disabled.")

What is a feature flag?

allow_darkmode enable_customer_chat

[on / off] [on / off]

[customer_type = B2B]

[language = cz]

A bit of general theory, but everyone can have a
different motivation or different needs.

Why should you care?

From more practical cases:

• Independent (Quicker) release cycle

• Rollback / Kill-switch

• Testing in production

• Early / Block access

• Calendar driven launches

To more *theoretical ones:

• Maintenance

• Canary releases

• Incremental roll outs

• Hypothesis driven development (A/B)

• Newbie / Advanced users

*) My perspective only, as I have experience from not so much dynamic environment.

It is still one of many methods to deal with these
situations. Sometimes you need to change the process

around it as well for effective use.

To branch or not to branch?

“If you merge every day, suddenly you never get to the
point where you have huge merge conflicts that are hard

to resolve.” — Linus Torvalds

To branch or not to branch?

Feature flags does not replace branching, it is
complementary.

And how to benefit?

• Flexibility in feature release

• Reduced risk of deploying new features

• Separation of deployment from release

• Ability to perform closed testing and

experimentation, even in production

• Shorter development cycle

• Simplified version control

• One of the gates to continues deployments

But it’s not all roses.

Validation complexity

Source: martinfowler.com/articles/feature-toggles.html

martinfowler.com/articles/feature-toggles.html

Any other pitfalls?

• Testing and validation complexity

• Tech. depts if not managed correctly and FF

accumulate

• Flags proliferation can clutter the codebase

• Badly selected level of flagging

• Carrying costs of feature flags

• Insufficient management and monitoring

So there must be some recommendations?

SMARSPowerPeg

For testing purposes only

Unused since 2003 (8 years)

Validation algorithm for another

component, buy high sells low

Newly build core algorithm for routing

the orders

Uses same FF as PowerPeg

Never reuse old feature flags.

Recommendation No. 1

Be proactive in removing feature flags that are no
longer needed.

Recommendation No. 2

Choose descriptive names for your flags.

Recommendation No. 3

Choose descriptive names for your flags.

Recommendation No. 3

enable_power_peg

activate_smars_algorithm

feature_test_8

feature_jira_1867

And now together

• Ensure consistency (especially data) by

destructive changes

• Be proactive in removing old flags

• All new features must be tested

• Choose right level of flagging

• Use them with measure, can get out of control

• Keep lifespan of flags short (weeks)

• Choose descriptive names

• Setup proper logging and monitoring

Why we started to implement

Before Q1/2023:

• more frequent releases of new changes that we can enable/disable without outage

• allow other teams to independently develop & test our applications

• mitigate the risk associated with releases by delivering small changes we can turn off

• allow testing the changes on selected set of users on the production environment

After Q1/2023:

• fully support the trunk-based development on multiple environments

• fully support short-lived feature branches approach

Before you start to implement

• identify your needs, you can benefit even from just of few use cases

• identify the right places and sets of the application/components where it makes sense to implement it

• find the right contexts/strategies that will be interesting in context of the whole company (area)

• materialize the benefit (effort to implementation / usage of the flags / code changes / flag type)

• keep it in mind while creating new applications from the beginning, difficult to change existing

• research a build versus buy solution to help you with management of flags

• do not forget the processes associated with feature flags (introduction, cleanup, production enablement)

Toggles introduce complexity.

We can keep that complexity in check by using smart toggle implementation practices and appropriate
tools to manage our toggle configuration.

Unleash

• Feature flag management tool

• Open-source, no vendor lock in

• Fully transparent lifecycle, communication,

open to contributions

• Free and Enterprise plan available

• On-premise and hosted solution possible

• Very active community and development

• A lot of languages already supported by SDKs

• Several deployment methods available

Server-side SDKs:

• Go SDK
• Java SDK
• Node.js SDK
• PHP SDK
• Python SDK
• Ruby SDK
• Rust SDK
• .NET SDK

Client-side SDKs:

• Android SDK
• Flutter Proxy SDK
• iOS Proxy SDK
• Javascript SDK
• React Proxy SDK
• Svelte Proxy SDK
• Vue Proxy SDK

Demo components

{
"name": "product_with_price",
"type": "release",
"enabled": false,
"project": "default",
"stale": false,
"strategies": [
{
"name": "default",
"constraints": [],
"parameters": {},
"variants": []

}
],
"variants": [],
"description": null,
"impressionData": false

}

GET /api/client/features/product_with_price

[
{
"id": "P-123",
"status": "Active",
"price": null

},
{
"id": "P-456",
"status": "Inactive",
"price": null

}
]

GET /api/v1/products

Feature Flags Demo Unleash

What else to read?

• Martin Fowler – Feature Toggles

• FeatureFlags.io

• getunleash.io

https://martinfowler.com/articles/feature-toggles.html
https://featureflags.io/
https://getunleash.io/

	Slide 1
	Slide 2: Jakub Huspek
	Slide 3: What is not a feature flag?
	Slide 4
	Slide 5: What is a feature flag?
	Slide 6: What is a feature flag?
	Slide 7
	Slide 8
	Slide 9: Why should you care?
	Slide 10
	Slide 11: To branch or not to branch?
	Slide 12
	Slide 13: To branch or not to branch?
	Slide 14
	Slide 15: And how to benefit?
	Slide 16
	Slide 17: Validation complexity
	Slide 18: Any other pitfalls?
	Slide 19
	Slide 20
	Slide 21: SMARS
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: And now together
	Slide 31: Why we started to implement
	Slide 32: Before you start to implement
	Slide 33
	Slide 34
	Slide 35: Unleash
	Slide 36
	Slide 37: Demo components
	Slide 38
	Slide 39: What else to read?
	Slide 40

